Fusion and singular vectors inA 1 (1) highest weight cyclic modules

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 92 01 07 9 v 1 3 1 Ja n 19 92 Fusion and singular vectors in A ( 1 ) 1 highest weight cyclic

We show how the interplay between the fusion formalism of conformal field theory and the Knizhnik–Zamolodchikov equation leads to explicit formulae for the singular vectors in the highest weight representations of A (1) 1. Infinite dimensional Lie algebras occur everywhere in the study of 2-d conformal field theories: the Virasoro algebra and the affine algebras are the most common examples. Ho...

متن کامل

Highest-weight Theory: Verma Modules

We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or, equivalently, of a compact Lie group). It turns out that such representations can be characterized by their “highest-weight”. The first method we’ll consider is purely Lie-algebraic, it begins by constructing a universal representation with a given high...

متن کامل

Laplace transform and unitary highest weight modules

The unitarizable modules in the analytic continuation of the holomorphic discrete series for tube type domains are realized as Hilbert spaces obtained through the Laplace transform.

متن کامل

Fermionic Characters and Arbitrary Highest-weight Integrable Sl R+1 -modules

This paper contains the generalization of the Feigin-Stoyanovsky construction to all integrable sl r+1-modules. We give formulas for the q-characters of any highest-weight integrable module of sl r+1 as a linear combination of the fermionic q-characters of the fusion products of a special set of integrable modules. The coefficients in the sum are the entries of the inverse matrix of generalized...

متن کامل

Characterization of Simple Highest Weight Modules

We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 1993

ISSN: 0010-3616,1432-0916

DOI: 10.1007/bf02097060